RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1990 Volume 54, Issue 2, Pages 339–356 (Mi im1097)

This article is cited in 18 papers

The norm residue homomorphism of degree three

A. S. Merkur'ev, A. A. Suslin


Abstract: An analogue of Hilbert's Theorem 90 is proved for the Milnor groups of the fields $K_3^M$. Specifically, let $L/F$ be a quadratic extension, and let be the generator of the Galois group. Then the sequence
$$ K_3^M(L)\stackrel{1-\sigma}{\longrightarrow}K_3^M(L)\stackrel{N}{\longrightarrow}K_3^M(F) $$

is exact. As a corollary one can prove bijectivity of the norm residue homomorphism of degree three:
$$ K_3^M(F)/2^nK_3^M(F)\to H^3(F,\mu_{2^n}^{\otimes 3}). $$
Finally, the 2-primary torsion in $K_3^M(F)$ is described: if the field $F$ contains a primitive $2^n$th root of unity $\xi$, then the $2^n$-torsion subgroup of $K_3^M(F)$ is $\{\xi\}\cdot K_2(F)$.

UDC: 512.772

MSC: Primary 12G05, 11R34; Secondary 18F25, 14F15

Received: 15.06.1988


 English version:
Mathematics of the USSR-Izvestiya, 1991, 36:2, 349–367

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025