RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 6, Pages 1291–1315 (Mi im1157)

This article is cited in 40 papers

Commuting differential operators of rank 3, and nonlinear differential equations

O. I. Mokhov


Abstract: Complete solutions of the commutation equations of ordinary differential operators are obtained, to which there corresponds a three-dimensional vector bundle of common eigenfunctions over an elliptic curve. The deformation of the commuting pair by the Kadomtsev–Petviashvili equation is studied. The finite-zone solutions of the Kadomtsev–Petviashvili equation of rank 3 and genus 1 are explicitly expressed in terms of functional parameters satisfying a Boussinesq-type system of two evolution equations.
Bibliography: 40 titles.

UDC: 517.9+512.7

MSC: Primary 47E05, 14K07, 14K25; Secondary 25D25, 34B25, 58F37, 14G10, 12F10

Received: 27.04.1988


 English version:
Mathematics of the USSR-Izvestiya, 1990, 35:3, 629–655

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024