RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 1, Pages 139–163 (Mi im1172)

Quasiclassical asymptotics of the scattering cross-section for the Schrödinger equation

D. R. Yafaev


Abstract: The author considers scattering with a potential $gq(x)$, $x\in\mathbf R^m$, that decreases as $|x|\to\infty$ as a homogeneous function of degree $-\alpha$. In the domain $gk^{-1}\to\infty$, $gk^{\alpha-2}\to\infty$ the asymptotics of the forward scattering amplitude is found, as well as the total scattering cross-section averaged over a small interval of $k$. This is determined only by the behavior of $q(x)$ as $|x|\to\infty$. Dual results are obtained for strongly singular potentials.
Bibliography: 16 titles.

UDC: 539.101

MSC: Primary 35J10, 35P25; Secondary 81F15

Received: 19.03.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 32:1, 141–165

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025