RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 3, Pages 451–478 (Mi im1189)

This article is cited in 17 papers

On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. II

D. V. Anosov


Abstract: This paper is a continuation of Part I (Izv. Akad. Nauk SSSR Ser. Mat., 1987, v. 51, № 1, p. 16–43; Math. USSR-Izv. 30 (1988), 15–38). Let $L$ be a (semi) infinite nonselfintersecting continuous curve on a closed surface of nonpositive Euler characteristic and consider the behavior at “infinity” of the curve obtained by lifting $\widetilde L$ to the universal cover: either the Lobachevsky or the Euclidean plane. The possible types of this behavior for arbitrary $\widetilde L$ turn out to be the same as those for $L$ which are semitrajectories of $C^\infty$ flows. Questions concerning the approach of to infinity along a definite direction are again considered. An example is constructed in which all points of the absolute are limit points in $\widetilde L$.
Bibliography: 12 titles.

UDC: 517.91

MSC: Primary 58F25; Secondary 34C35, 34C40

Received: 16.06.1987


 English version:
Mathematics of the USSR-Izvestiya, 1989, 32:3, 449–474

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025