RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 3, Pages 479–500 (Mi im1190)

This article is cited in 3 papers

On the number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line

L. V. Kiseleva


Abstract: Suppose $\varepsilon>0$ is an arbitrarily small fixed number,
$$ Y\geqslant Y_0(\varepsilon)>0,\quad H=Y^\varepsilon,\quad Y_1=Y^{\frac{11}{12}+\varepsilon},\quad Y\leqslant T\leqslant Y+Y_1. $$

Consider the relation
$$ N_0(T+H)-N_0(T)\geqslant cH\ln T, $$
where $c=c(\varepsilon)>0$ is a constant depending only on $\varepsilon$, and let $E$ denote the set of those $T$ in the interval $Y\leqslant T\leqslant Y+Y_1$ for which this relation does not hold. It is shown that the measure of this set satisfies $\mu(E)\leqslant Y_1Y^{-0.5\,\varepsilon}$.
Bibliography: 19 titles.

UDC: 511

MSC: 11M26

Received: 05.08.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 32:3, 475–499

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024