RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 3, Pages 581–600 (Mi im1195)

This article is cited in 3 papers

A normal form theorem for second-order classical logic with an axiom of choice

G. E. Mints


Abstract: A cut-elimination theorem for the second-order logic with an axiom of choice of type $0,1$ or $1,1$ is proved. In the first case the Päppinghaus scheme is applied; in the second the calculus with an epsilon-symbol for predicates is used.
Bibliography: 5 titles.

UDC: 510.65

MSC: 03F05

Received: 01.07.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 32:3, 587–605

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025