RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 5, Pages 991–1004 (Mi im1214)

This article is cited in 7 papers

On expansion of analytic functions in exponential series

S. N. Melikhov


Abstract: Let $G$ be an arbitrary convex domain in the $p$-dimensional ($p\in\mathbf N$) complex space $\mathbf C^p$, and $H(G)$ the space of single-valued analytic functions on $G$, endowed with the topology $\tau_G$ of uniform convergence on compact subsets of $G$. In this paper the following assertion is obtained (as a corollary to a more general result proved here) for a bounded domain $G$: if a sequence $\{E_n\}_{n\in\mathbf N}$ of closed subspaces of $H(G)$ that are invariant under each partial differentiation $\frac{\partial}{\partial z_k}$ ($k=1,\dots,p$) has the property that every function locally analytic on $\overline G$ can be represented as a series
\begin{equation} \sum_{n=1}^\infty x_n(z),\qquad x_n(z)\in E_n,\quad\forall\,n\in\mathbf N, \end{equation}
convergent (absolutely convergent) in the topology $\tau_G$, then any function in $H(G)$ can be expanded in a series (1) convergent (absolutely convergent) in $\tau_G$.
Bibliography: 21 titles.

UDC: 517.9

MSC: Primary 32A05, 32A30, 30B50; Secondary 46E10, 46A05, 46A12

Received: 22.05.1986
Revised: 07.05.1987


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:2, 317–329

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024