RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 5, Pages 1051–1069 (Mi im1217)

Projection from the spaces $E^p$ on a convex polygon onto subspaces of periodic functions

A. M. Sedletskii


Abstract: Notation: $D$ is a convex polygon with vertices $a_1,\dots,a_m$, $P_k$ is the half-plane bounded by the extension of the side $a_k$, $a_{k+1}$ and containing $D$, $E^p$ is the Hardy–Smirnov space on $D$, and $Q_s$ is the subspace of $E^p$ consisting of the analytic functions on $P_k$ that are periodic with period $a_{k+1}-a_k$ and that vanish at $\infty$. For suitable $s$ the subspaces $Q_s$ and $H_1^p,\dots,H_m^p$ generate $E^p$. Is $E^p$ ($1<p<\infty$) decomposable into their direct sum? If $m$ is odd, then the answer is positive for $p\ne2$ and negative for $p=2$.
Bibliography: 15 titles.

UDC: 517.5

MSC: Primary 30C99, 30H05; Secondary 30D55, 30D15

Received: 02.10.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:2, 373–390

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024