RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 5, Pages 1102–1108 (Mi im1221)

This article is cited in 20 papers

Stochastically complete manifolds and summable harmonic functions

A. A. Grigor'yan


Abstract: Main result: if on a geodesically complete Riemannian manifold $M$ the volume $V_R$ of a geodesic ball of radius $R$ with fixed center satisfies the condition $\displaystyle\int^\infty\frac{R\,dR}{\ln V_R}=\infty$ then every nonnegative integrable superharmonic function on $M$ is equal to a constant.
Bibliography: 18 titles.

UDC: 517.95

MSC: Primary 53C20, 31B05, 60J60; Secondary 53C22, 30D20, 35J05, 34B27

Received: 29.04.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:2, 425–432

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025