RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 6, Pages 1252–1271 (Mi im1229)

This article is cited in 8 papers

K3 surfaces over number fields and $l$-adic representations

S. G. Tankeev


Abstract: The Tate conjecture on algebraic cycles is proved for any algebraic K3 surface over a number field. If the canonical representation of the Hodge group in the $\mathbf Q$-lattice of transcendental cohomology classes is absolutely irreducible, then the Mumford–Tate conjecture is true for such a K3 surface.
Bibliography: 18 titles.

UDC: 513.6

MSC: Primary 14J28, 14G13, 11G35; Secondary 14G25, 14K15

Received: 14.04.1987


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:3, 575–595

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025