RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 2, Pages 258–275 (Mi im1240)

This article is cited in 8 papers

On the asymptotics of the solution of a problem with a small parameter

A. M. Il'in


Abstract: The problem $\partial_tu+\partial_x\varphi(u)=\varepsilon\partial_x^2u$, $u(x,t_0)=\psi(x)$, is considered, where $\varphi,\psi\in C^\infty$, $\varphi''(u)>0$, $0\leqslant\varepsilon\ll1$. It is assumed that for $\varepsilon=0$ the problem has a generalized solution with one smooth line of discontinuity, so that this line, modeling a shock wave, appears within the strip $\Omega=\{t_0\leqslant t\leqslant T\}$. The asymptotics of a solution, uniform in $\Omega$ up to any degree in $\varepsilon$, is constructed and justified.
Bibliography: 18 titles.

UDC: 517.956

MSC: Primary 35K55, 35B25, 35C20; Secondary 76L05

Received: 24.03.1986
Revised: 17.01.1988


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:2, 261–279

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025