RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 2, Pages 345–362 (Mi im1244)

This article is cited in 3 papers

The structure of a neighborhood of a homogeneous cycle in a medium with diffusion

A. Yu. Kolesov


Abstract: On the basis of the Krylov–Bogolyubov–Mitropol'skii asymptotic method a technique is developed for constructing a normal form in a neighborhood of a homogeneous cycle of a boundary value problem of “reaction-diffusion” type which loses stability as some parameters change. Its applications are illustrated with a number of substantial examples. In particular, dynamic effects connected with the generation of a cycle from a densification of trajectories are considered.
Bibliography: 28 titles.

UDC: 517.926

MSC: Primary 35K57; Secondary 35B35, 34C35, 92A15

Received: 05.06.1987


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:2, 355–372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025