RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 4, Pages 782–813 (Mi im1274)

This article is cited in 9 papers

Some remarks on the $l$-adic regulator. II

L. V. Kuz'min


Abstract: Given an algebraic number field $k$ with unit group $U(k)$ and a prime number $l$, consider the bilinear form $S\colon(U(k)\otimes\mathbf Z_l)(U(k)\otimes\mathbf Z_l)\to\mathbf Q_l$, $S(x,y)=\operatorname{Sp}_{k/\mathbf Q}(\log x\cdot\log y)$ where $\log$ is the $l$-adic logarithm. For certain types of fields it is shown that the form $S$ is nondegenerate. We investigate the behavior of the rank of the kernel of $S$ on the family of intermediate fields in a $\mathbf Z_l$-extension $k_\infty/k$.
Bibliography: 11 titles.

UDC: 519.4

MSC: Primary 11R23, 11R27; Secondary 11R34, 11S31, 11R33

Received: 17.11.1987


 English version:
Mathematics of the USSR-Izvestiya, 1990, 35:1, 113–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024