RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 4, Pages 833–850 (Mi im1276)

This article is cited in 9 papers

On Wiman's theorem concerning the minimum modulus of a function analytic in the unit disk

O. B. Skaskiv


Abstract: This paper contains an investigation of conditions under which an analytic function $F(z)$ represented by a Dirichlet series
$$ F(z)=\sum_{n=0}^\infty a_ne^{z\lambda_n},\qquad 0=\lambda_0<\lambda_n\uparrow+\infty\quad(n\to+\infty), $$
absolutely convergent in $\{z\colon\operatorname{Re}z<0\}$ satisfies the relation
$$ F(x+iy)=(1+o(1))a_{\nu(x)}e^{(x+iy)\lambda_{\nu(x)}} $$
uniformly with respect to $y\in\mathbf R$ as $x\to-0$ in the complement of some sufficiently small set. The results are used to derive as simple corollaries new assertions for functions analytic in the unit disk that are represented by lacunary power series. All the assertions proved in this article are best possible or close to best possible.
Bibliography: 12 titles.

UDC: 517.535

MSC: Primary 30B50; Secondary 30B10

Received: 05.01.1987


 English version:
Mathematics of the USSR-Izvestiya, 1990, 35:1, 165–182

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024