RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 2, Pages 306–318 (Mi im1295)

This article is cited in 14 papers

An estimate of the number of parameters defining an $n$-dimensional algebra

Yu. A. Neretin


Abstract: Consider an arbitrary family of nonisomorphic $n$-dimensional complex Lie algebras (respectively, associative algebras, commutative algebras) that depends continuously on a certain set of parameters $t_1,\dots,t_N\in\mathbf C$. The asymptotics is obtained for the largest number $N$ of parameters possible when $n$ is fixed: $\frac 2{27}n^3+O(n^{8/3})$, $\frac 4{27}n^3+O(n^{8/3})$, $\frac 2{27}n^3+O(n^{8/3})$ respectively. A decomposition into irreducible components is also studied for the algebraic variety $\text{Lie}_n$ of all possible Lie algebra structures on the linear space $\mathbf C^n$.
Bibliography: 19 titles.

UDC: 519.4

MSC: Primary 16A46, 17B05; Secondary 16A58

Received: 18.02.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 283–294

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024