RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1997 Volume 61, Issue 3, Pages 187–202 (Mi im130)

This article is cited in 4 papers

Fourier transforms of rapidly decreasing functions

A. M. Sedletskii


Abstract: If $f\in L^p(\mathbb R)$, $p\geqslant 2$, then the Fourier transform $F(z)$ of the function $\exp(-a|t|^\alpha)f(t)$, $a>0$, $\alpha>1$, belongs to the space of entire functions that are $p$-power integrable over the whole plane with some completely determined weight. Conversely, if $F(z)$ is an entire function in such a space, where $1\leqslant p\leqslant 2$, then $F(z)$ is a Fourier transform of the above form for some function $f\in L^p(\mathbb R)$.

MSC: 42A38

Received: 02.03.1995

DOI: 10.4213/im130


 English version:
Izvestiya: Mathematics, 1997, 61:3, 647–662

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024