RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 2, Pages 412–420 (Mi im1301)

This article is cited in 1 paper

On the possibility of division and involution to a fractional power in the algebra of rational functions

P. V. Paramonov


Abstract: Suppose that a function $f(z)$ satisfies a Lipschitz condition with an arbitrary positive element on a compact set $X$ in $\mathbf C$ and can be uniformly approximated on $X$ by rational functions. If $q>1$ and some branch of $(f(z))^q$ is continuous on $X$, then this branch can also be approximated on $X$ by rational functions. Also, an example is given of a compact set $X$ and two functions $f(z)$ and $g(z)$ uniformly approximable on $X$ by rational functions and with ratio $g(z)/f(z)$ naturally (uniquely) defined and continuous on $X$ but not approximable by rational functions.
Bibliography: 7 titles.

UDC: 517.5

MSC: Primary 41A20, 46J10; Secondary 30C15, 41A46

Received: 20.02.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 385–393

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024