RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 2, Pages 421–428 (Mi im1302)

This article is cited in 2 papers

Proof of a conditional theorem of Littlewood on the distribution of values of entire functions

A. È. Eremenko, M. L. Sodin


Abstract: It is proved that for any entire function $f$ of finite nonzero order there is a set $S$ in the plane with density zero and such that for any $a\in\mathbf C$ almost all the roots of the equation $f(z)=a$ belong to $S$. This assertion was deduced by Littlewood from an unproved conjecture about an estimate of the spherical derivative of a polynomial. This conjecture is proved here in a weakened form.
Bibliography: 11 titles.

UDC: 517.53

MSC: Primary 30D35; Secondary 30C10

Received: 30.01.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 395–402

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024