RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 3, Pages 635–651 (Mi im1312)

This article is cited in 17 papers

Approximation of functions on the sphere

S. M. Nikol'skii, P. I. Lizorkin


Abstract: The authors consider classes $H_p^r(\sigma)$ of functions $f$ on a sphere $\sigma$, whose smoothness is determined by the properties of differences along geodesics (duly averaged) in the metric of $L_p(\sigma)$. An integral representation of a function $f \in L_p(\sigma)$ is obtained in terms of the differences mentioned. On this basis direct and inverse theorems on approximation of functions $f \in H_p^r(\sigma)$ be polynomials in spherical harmonics are established. These theorems completely characterize the class $H_p^r(\sigma)$.
Bibliography: 9 titles.

UDC: 517.518

MSC: Primary 41A10, 41A63, 41A25; Secondary 41A17

Received: 21.03.1986


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:3, 599–614

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025