RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 4, Pages 878–892 (Mi im1323)

This article is cited in 30 papers

The method of isomonodromy deformations and connection formulas for the second Painlevé transcendent

A. R. Its, A. A. Kapaev


Abstract: A complete asymptotic description is given for the general real solution of the second Painlevé equation, $u_{xx}-xu+2u^3=0$, including explicit formulas connecting the asymptotics as $x\to\pm\infty$. The approach is based on the asymptotic solution of the direct problem of monodromy theory for a linear system associated with the Painlevé equation in the framework of the method of isomonodromy deformations. There is a brief exposition of the method of isomonodromy deformations itself, which is an analogue in the theory of nonlinear ordinary differential equations of the familiar inverse problem method.
Bibliography: 23 titles.

UDC: 517.9

MSC: Primary 34E20; Secondary 34A20

Received: 22.07.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 31:1, 193–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024