RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 6, Pages 1214–1227 (Mi im1338)

This article is cited in 9 papers

Cycles on simple Abelian varieties of prime dimension over number fields

S. G. Tankeev


Abstract: For all simple Abelian varieties of prime dimension over number fields the author proves 1) a version of the Mumford–Tate conjecture, asserting that the Lie algebra of the image of the $l$-adic representation is isomorphic to the Lie algebra of the set of $\mathbf Q_l$-points of the Mumford–Tate group, and 2) the Tate conjecture on cycles.
Bibliography: 21 titles.

UDC: 513.6

MSC: 14K15, 14C99

Received: 24.12.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 31:3, 527–540

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025