RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 2, Pages 283–308 (Mi im1355)

This article is cited in 20 papers

Explicit construction of class field theory for a multidimensional local field

S. V. Vostokov


Abstract: Let $k$ be a finite extension of the field of $p$-adic numbers $\mathbf Q_p$ and $k\{\{t\}\}$ the field of Laurent series $\sum_{-\infty}^\infty a_it^i$ for which the $a_i$ are bounded in the norm of $k$ and $a_i\to0$ as $i\to-\infty$. In the $n$-dimensional local field $F=k\{\{t_1\}\}\cdots\{\{t_{n-1}\}\}$ a pairing is given in explicit form between the completed Milnor $k$-functor $K_n^{\mathrm{top}}(F)$ and the multiplicative group $F^*$ with values in the group of $q=p^m$th roots of unity.
Bibliography: 14 titles.

UDC: 519.48

MSC: Primary 11S31, 11S70; Secondary 11S10, 11S15

Received: 01.12.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:2, 263–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025