RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 2, Pages 369–392 (Mi im1359)

This article is cited in 1 paper

On an estimate for the smallness of sets of points of nondifferentiability of functions as related to the degree of approximation by rational functions

E. A. Sevast'yanov


Abstract: This paper establishes best possible conditions, on the degree of approximation of functions $f(x_1,\dots,x_m)$ in $L_p([0,1]^m)$ ($0<p\leqslant\infty$) by rational functions, that guarantee that the function $f$ has a $p$th mean differential of order $\lambda>0$ everywhere except on a set of zero Hausdorff ($m-1+\alpha$) measure ($0<\alpha\leqslant1$).
Bibliography: 11 titles.

UDC: 517.5

MSC: 41A20, 26B05

Received: 27.05.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:2, 347–369

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025