RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1997 Volume 61, Issue 4, Pages 67–80 (Mi im136)

This article is cited in 6 papers

On 2-locally Seidel graphs

A. A. Makhnev, D. V. Paduchikh

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: The $i$-neighbourhood of a vertex $a$ of a graph $\Gamma$ is the subgraph $\Gamma_i(a)$ induced by $\Gamma$ on the set of all vertices of $\Gamma$ that lie at distance $i$ from $a$. Let $\mathcal F$ denote a class of graphs. A graph $\Gamma$ is called an $i$-locally $\mathcal F$-graph if $\Gamma_i(a)$ lies in $\mathcal F$ for any vertex $a$ of $\Gamma$. In this paper we classify the connected regular graph in which the 2-neighbourhoods are Seidel graphs. (Recall that a Seidel graph is a strongly regular graph that has eigenvalue $-2$). The class of Seidel graphs consists of the complete multipartite graphs with parts of order 2, lattice and triangular graphs, as well as the Shrikhande, Chang, Petersen, Clebsch, and Schlafli graphs.

MSC: Primary 05C75; Secondary 05C25, 51E24

Received: 03.11.1995

DOI: 10.4213/im136


 English version:
Izvestiya: Mathematics, 1997, 61:4, 743–756

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025