RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 2, Pages 393–426 (Mi im1360)

This article is cited in 2 papers

An asymptotic formula for the number of representations by totally positive ternary quadratic forms

Yu. G. Teterin


Abstract: Suppose $\mathfrak o$ is a maximal order of a totally real algebraic number field $K$; $f(x_1,x_2,x_3)$ is a totally positive quadratic form over $K$; $\mathfrak a$ and $\mathfrak c$ are ideals of the ring $\mathfrak o$; $m\in K$; and $x_1,x_2,x_3\in\mathfrak o$. The author proves an asymptotic formula for the number of solutions of the system
$$ f(x_1,x_2,x_3)=m,\quad\text{g.c.d.}(x_1,x_2,x_3)=\mathfrak c,\qquad x_1\equiv b_1,\ x_2\equiv b_2,\ x_3\equiv b_3\pmod{\mathfrak a} $$
in numbers $x_1,x_2,x_3\in\mathfrak o$. The proof is based on a discrete ergodic method.
Bibliography: 19 titles.

UDC: 511.512

MSC: 11E10, 11E20

Received: 09.06.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:2, 371–403

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025