RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 3, Pages 467–510 (Mi im1363)

This article is cited in 20 papers

Cohomology of a quasihomogeneous complete intersection

A. G. Aleksandrov


Abstract: In this paper are computed the Poincaré series of the highest local cohomology of the modules of regular forms on a nondegenerate quasihomogeneous singularity and the dimensions of the cohomology spaces of the bidual sheaves of holomorphic forms on a quasismooth complete intersection. Theorems are proved about the structure of the module of vector fields on a nondegenerate quasihomogeneous singularity and about whether the maximal modular stratum of a versal deformation of such a singularity is reduced.
Bibliography: 47 titles.

UDC: 513.015.7+515.17

MSC: Primary 14B05; Secondary 14B07, 14B15, 14L30, 14M30, 32B30

Received: 23.12.1982
Revised: 22.12.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:3, 437–477

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025