RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 3, Pages 511–529 (Mi im1364)

This article is cited in 18 papers

Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves

M. V. Babich, A. I. Bobenko, V. B. Matveev


Abstract: A new approach is given for extracting from general formulas of finite-zone integration solutions of genus $g\geqslant2$ expressible in terms of one-dimensional theta functions. As an application general formulas fo the type of the Lamb Ansatz for genus $g=3$ are found for the sine-Gordon, nonlinear Schrödinger and Koretweg–de Vries equations, and the period matrices of some hyperelliptic curves are computed explicitly.
Bibliography: 35 titles.

UDC: 517.43+519.46

MSC: Primary 35Q20; Secondary 35J10, 35R30, 14K25

Received: 29.06.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:3, 479–496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025