RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 2, Pages 230–247 (Mi im1387)

This article is cited in 5 papers

Symplectic cobordism with singularities

V. V. Vershinin


Abstract: It is proved that there exist multiplicative structures in the symplectic bordism theories with singularities of types $\Sigma_n$ and $\Sigma$, where $\Sigma_n=(\theta_1,\Phi_1,\Phi_2,\Phi_4,\dots,\Phi_{2^{n-2}})$ and $\Sigma=(\theta_1,\Phi_1,\Phi_2,\Phi_4,\dots,\Phi_{2^j},\dots)$, and that the ring $MSp^\Sigma_*$ is isomorphic to a polynomial ring $Z[w_1,\dots,w_i,\dots,x_2,x_4,\dots,x_k,\dots]$, where $i=1,2,3,\dots$; $k=2,4,5,\dots$, $k\ne2^j-1$; $\deg w_i=2(2^i-1)$ and $\deg x_k=4k$.
Bibliography: 10 titles.

UDC: 515.142.424+515.142.426

MSC: Primary 57R90; Secondary 55N22, 57R77

Received: 09.03.1982


 English version:
Mathematics of the USSR-Izvestiya, 1984, 22:2, 211–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024