RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 3, Pages 659–687 (Mi im1416)

This article is cited in 4 papers

The multidimensional Schrödinger operator with a periodic potential

M. M. Skriganov


Abstract: In this paper the author investigates the zonal structure of the spectrum of the three-dimensional Schrödinger operator with periodic potential. The main result is an estimate of the number $n(\lambda)$ of zones of the spectrum covering the real point $\lambda$. It is shown that, under certain conditions on the period lattice of the potential, $n(\lambda)>\lambda$ when $\lambda\to\infty$. From this estimate it follows that the number of lacunae in the spectrum of the Schrödinger operator is finite. It is also shown that for periodic potentials with small norm there are in general no lacunae in the spectrum. Analogous results are formulated for the Schrödinger operator in higher dimensions.
Bibliography: 18 titles.

UDC: 517

MSC: 35J10, 35P20


 English version:
Mathematics of the USSR-Izvestiya, 1984, 22:3, 619–645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025