RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 5, Pages 999–1029 (Mi im1434)

This article is cited in 14 papers

Pseudodifferential operators and a canonical operator in general symplectic manifolds

M. V. Karasev, V. P. Maslov


Abstract: A calculus of $h$-pseudodifferential operators with symbols on $\mathfrak X$ is defined modulo $O(h^2)$ on a closed symplectic manifold $(\mathfrak X,\omega)$ under the condition that $[\omega]/(2\pi h)-\varkappa/4 \in H^2(\mathfrak X,\mathbf Z)$. The class $\varkappa\in H^2(\mathfrak X,\mathbf Z)$ is described. On Lagrangian submanifolds $\Lambda\subset\mathfrak X$ a class in $H^1(\Lambda,\mathbf U(1))$ obstructing the definition of a canonical operator on $\Lambda$ is found. It is shown that an analogus calculus of pseudodifferential operators can be constructed with respect to homogeneity from an action of the group $\mathbf R_+$ on $\mathfrak X$.
Bibliography: 22 titles.

UDC: 517.9

MSC: Primary 35S05, 58F05, 58G15; Secondary 47G05, 53C15, 55N30, 55S35, 58F06, 70D10, 70G35

Received: 14.06.1982


 English version:
Mathematics of the USSR-Izvestiya, 1984, 23:2, 277–305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024