RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1983 Volume 47, Issue 6, Pages 1224–1247 (Mi im1461)

On some representing systems in spaces of analytic functions

Yu. F. Korobeinik


Abstract: Let $E_\rho(z)$ be the Mittag-Leffler function. This article investigates the connection between “representing” properties for systems $\mathscr E_{\rho,\Lambda}=\{E_{\rho}(\lambda_kz)\}^{\infty}_{k=1}$ and $\mathscr E^{(n)}_{\rho,\Lambda}=\{E_\rho(\lambda_kz),zE_\rho(\lambda_kz),\dots,z^nE_\rho(\lambda_kz)\}^{\infty}_{k=1}$, $n\geqslant1$, as well as for systems $\mathscr E^1_{\rho,\Lambda}=\{E_\rho(\lambda_{k,1}z)\}^\infty_{k=1}$, $\mathscr E^2_{\rho,\Lambda}=\{E_\rho(\lambda_{k,2}z)\}^\infty_{k=1}$, and $\mathscr E^3_{\rho,\Lambda}=\mathscr E^1_{\rho,\Lambda}\cup\mathscr E^2_{\rho,\Lambda}$ in spaces of analytic functions.
Bibliography: 18 titles.

UDC: 517.9

MSC: Primary 30B50, 30B60, 30D10, 30D15; Secondary 46A35

Received: 25.06.1982


 English version:
Mathematics of the USSR-Izvestiya, 1984, 23:3, 487–509

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025