RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1984 Volume 48, Issue 4, Pages 676–704 (Mi im1486)

On integrability of the Banach indicatrix of a smooth mapping

S. A. Gulevich


Abstract: Let $f\colon\mathbf R^n\to\mathbf R^n$ be a mapping of class $C^{(l)}$ with compact support, and let $N(f,y)$ be the number of solutions of the equation $f(x)=y$. It is proved that if $p<l$, then $\int[N(f,y)]^p\,dy<\infty$, and an example is given which shows that this integral can diverge if $p>l$.
Bibliography: 9 titles.

UDC: 517.98

MSC: 58C25

Received: 15.02.1984


 English version:
Mathematics of the USSR-Izvestiya, 1985, 25:1, 19–44

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024