RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1984 Volume 48, Issue 6, Pages 1171–1195 (Mi im1513)

This article is cited in 3 papers

Singular perturbation theory for systems of differential equations in the case of multiple spectrum of the limit operator. III

A. G. Eliseev


Abstract: This paper is the third part of work dealing with the construction of a regularized asymptotic expression for the solution of a nonhomogeneous Cauchy problem in a finite-dimensional space $E$. The limit operator has a Jordan structure. On the lines of the theory of branching a method is given for describing all possible singularities of the problem in the case when the structure matrix has degeneracies. As an example, a complete analysis of a Cauchy problem is given in three-dimensional space, along with a certain case in four-dimensional space.
Bibliography: 4 titles.

UDC: 517.91/93

MSC: Primary 34A10, 34E05, 34E15, 34G10; Secondary 47A53, 47A55

Received: 09.02.1982


 English version:
Mathematics of the USSR-Izvestiya, 1985, 25:3, 475–500

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025