RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 1, Pages 24–45 (Mi im1527)

This article is cited in 19 papers

A metric theorem on the simultaneous approximation of a zero by the values of integral polynomials

V. I. Bernik


Abstract: In this paper it is proved that the inequality
$$ \prod_{i=1}^k|P(\omega_i)|<H^{-n+k-1-\varepsilon} $$
has only a finite number of solutions in integral polynomials $P(x)$ for almost all $\overline\omega=(\omega_1,\dots,\omega_k)$. Here $H$ is the coefficient of $P(x)$ largest in absolute value. Sprindzuk's conjecture is thereby proved.
Bibliography: 7 titles.

UDC: 511

MSC: 10F10, 26C10, 30C15

Received: 05.06.1978


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:1, 21–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025