RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1986 Volume 50, Issue 4, Pages 763–775 (Mi im1532)

This article is cited in 8 papers

On a theorem of Hurewicz and $K$-theory of complete discrete valuation rings

I. A. Panin


Abstract: It is proved that for a complete discrete valuation ring $\mathfrak D$ of zero characteristic with residue field $k$ of positive characteristic $p$ and maximal ideal $\mathfrak M$, the natural homomorphism of $K$-groups with coefficients
$$ K_i(\mathfrak D;\mathbf Z/p^n\mathbf Z)\to\varprojlim_iK_i(\mathfrak D/\mathfrak M^j;\mathbf Z/p^n\mathbf Z) $$
is an isomorphism for all positive $i$ and $n$.
For the ring of integers $\mathfrak D$ in a local field $K/\mathbf Q_p$, the groups $K_i(\mathfrak D;\mathbf Z/p^n\mathbf Z)$ are finite.
Bibliography: 13 titles.

UDC: 513.6

MSC: 18F25, 13F30

Received: 31.01.1984


 English version:
Mathematics of the USSR-Izvestiya, 1987, 29:1, 119–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025