RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1986 Volume 50, Issue 5, Pages 1015–1053 (Mi im1562)

This article is cited in 3 papers

An estimate of the number of terms in Waring's problem for polynomials of general form

D. A. Mit'kin


Abstract: A sharp upper bound is established for the smallest $s$ for which the equation $f(x_1)+\dots+f(x_s)=N$ is solvable in nonnegative integers $x_1,\dots,x_s$ for any fixed integer-valued polynomial $f(x)=a_n\binom xn+\dots+a_1\binom x1$ with $(a_n,\dots,a_1)=1$ and $a_n>0$ for all natural $N\geqslant N_0(f)$.
Bibliography: 44 titles.

UDC: 511

MSC: Primary 11P05, 11D72; Secondary 11P55, 11D79, 11D85, 11L40

Received: 27.09.1984


 English version:
Mathematics of the USSR-Izvestiya, 1987, 29:2, 371–406

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025