Abstract:
An algorithm is described that constructs, from every formula of the first order theory of algebraically closed fields, an equivalent quantifier-free formula in time which is polynomial in $\mathscr L^{n^{2a+1}}$, where $\mathscr L$ is the size of the formula, $n$ is the number of variables, and $a$ is the number of changes of quantifiers.
Bibliography: 15 titles.