RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 5, Pages 962–984 (Mi im1594)

This article is cited in 13 papers

Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces

V. K. Beloshapka, A. G. Vitushkin


Abstract: In this article the authors obtain lower bounds for the radius of convergence of power series which define a mapping from one nondegenerate real analytic hypersurface in $\mathbf C^n$ to another. For certain classes of surfaces a complete list is given of the parameters which substantially influence the size of the radius of convergence. In particular, for compact hypersurfaces with positive definite Levi form the radius is bounded by a constant depending on the pair of surfaces and not on the mapping.
Bibliography: 5 titles.

UDC: 517.5

MSC: 32F25

Received: 28.05.1981


 English version:
Mathematics of the USSR-Izvestiya, 1982, 19:2, 241–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024