RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1995 Volume 59, Issue 2, Pages 143–162 (Mi im16)

This article is cited in 5 papers

On the monodromy and mixed Hodge structure on cohomology of the infinite cyclic covering of the complement to a plane algebraic curve

Vik. S. Kulikova, V. S. Kulikovb

a Moscow State Academy of Printing Arts
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The semisimplicity is proved of the Alexander automorphism (the monodromy operator) on the cohomology $H^1(X_\infty)_{\ne 1}$ of the infinite cyclic covering of the complement to a plane non-reduced algebraic curve, and, in particular, the semisimplicity of $H^1(X_\infty)$ in the case of an irreducible curve. A natural mixed Hodge structure on $H^1(X_\infty)$ is introduced and the irregularity of cyclic coverings of $P^2$ is calculated in terms of the number of roots of the Alexander polynomial of the branch curve.

MSC: 14H30

Received: 11.10.1994


 English version:
Izvestiya: Mathematics, 1995, 59:2, 367–386

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025