RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 1, Pages 100–116 (Mi im1608)

This article is cited in 2 papers

On the interconnection of local and global approximations by holomorphic functions

P. V. Paramonov


Abstract: It is proved that if a function $f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, can be approximated locally outside its zero set by holomorphic functions, then it can be approximated also on the whole compact set $X$. This implies that if $f\in\operatorname{Lip}(\alpha,X)$, $\alpha>2/3$, and $f^2$ can be approximated by holomorphic functions on $X$, then so can $f$.
Bibliography: 5 titles.

UDC: 517.5

MSC: Primary 30E10, 41A20; Secondary 30C85

Received: 15.06.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 20:1, 103–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024