RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 5, Pages 1011–1046 (Mi im1657)

This article is cited in 112 papers

Cohomology of Severi–Brauer varieties and the norm residue homomorphism

A. S. Merkur'ev, A. A. Suslin


Abstract: The basic purpose of this paper is to prove bijectivity of the norm residue homomorphism $R_{F,n}\colon K_2(F)/nK_2(F)\to H^2(F,\mu_n^{\otimes 2})$ for any field $F$ of characteristic prime to $n$. In particular, if $\mu_n\subset F$, then any central simple algebra of exponent $n$ is similar to a tensor product of cyclic algebras. In the course of the proof we obtain partial degeneracy of the Gersten spectral sequence, and we compute some $K$-cohomology groups of Severi–Brauer groups corresponding to cyclic algebras of prime degree. The fundamental theorem also gives us several corollaries.
Bibliography: 27 titles.

UDC: 523.015.7

MSC: Primary 12A62, 14F15, 16A54, 16A61, 16A39; Secondary 13F25, 13A20

Received: 05.04.1982


 English version:
Mathematics of the USSR-Izvestiya, 1983, 21:2, 307–340

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025