RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 2, Pages 288–308 (Mi im1666)

This article is cited in 6 papers

Tests for the nonsimplicity of factorable groups

L. S. Kazarin


Abstract: The following theorem is proved.
Theorem. Suppose that a finite group $G$ is the product of two subgroups $A$ and $B,$ where $B$ is of odd order. Let at least one of the following conditions be satisfied:
(a) $A$ is $2$-separable, and $(|A|,|B|)=1$.
(b) $A$ is $2$-nilpotent with a $2$-separable derived group, $B$ is nilpotent, and $(|A|,|B|)=1$.
(c) $A$ is supersolvable and $B$ is nilpotent.
\noindent Then $O(A)$ lies in $O(G)$.

Bibliography: 30 titles.

UDC: 519.44

MSC: 20D10

Received: 04.04.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:2, 261–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025