RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1980 Volume 44, Issue 2, Pages 395–414 (Mi im1671)

This article is cited in 3 papers

Class numbers and groups of algebraic groups. II

V. P. Platonov, A. A. Bondarenko, A. S. Rapinchuk


Abstract: The central result of this article is a realization theorem, according to which, for a semisimple indefinite algebraic $K$-group $G$ ($K$ is an algebraic number field) an arbitrary finite abelian group of exponent $f$, where $f$ is the index of the kernel $F$ of the universal covering $\widetilde G\to G$, can be realized as a class group $\mathscr G\operatorname{cl}(\varphi(G))$.
In the second part of the article the class number of semisimple groups that are not indefinite (groups of compact type) is investigated. The following general theorem is proved: if $G$ is a semisimple group of compact type of degree $n$, then for any natural number $r$ there exists a lattice $M(r)\subset K^{2n}$ such that $\operatorname{cl}(G^{M(r)})$ is divisible by $r$.
Bibliography: 12 titles.

UDC: 513.6

MSC: 20G30, 12A85

Received: 13.11.1979


 English version:
Mathematics of the USSR-Izvestiya, 1981, 16:2, 357–372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024