RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 1, Pages 87–110 (Mi im1676)

This article is cited in 19 papers

On small perturbations of the set of zeros of functions of sine type

B. Ya. Levin, I. V. Ostrovskii


Abstract: A function of sine type means an entire function $S(z)$ of exponential type $\sigma>\nobreak0$, satisfying the condition $0<C_1\leqslant|S(z)|e^{-\sigma|\operatorname{Im}z|}\leqslant C_2<\infty$ outside some strip $|\operatorname{Im}z|<\nobreak H$. With the normalization $S(0)=1$ these functions can be represented in the form
\begin{equation} S(z)=\lim_{R\to\infty}\prod_{|\lambda_k|<R}(1-z\lambda_k^{-1}). \end{equation}
Let $\widetilde S(z)$ denote the function obtained from $S(z)$ by replacing $\lambda_k$ by $\lambda_k+\psi_k$ in (1), where $\{\psi_k\}$ is a bounded sequence.
In this paper necessary and sufficient conditions on $\{\psi_k\}$ are found, under which $\widetilde S(z)$ is also a function of sine type. Expressions for $\widetilde S(z)$ in terms of $S(z)$ are obtained in the case where $\psi_k=a_1\lambda_k^{-1}+\dots+a_n\lambda_k^{-n}+b_k\lambda_k^{-n}$, where $\{b_k\}\in L^p$, $p>1$.
Bibliography: 9 titles.

UDC: 517.5

MSC: 30C15, 30D15

Received: 04.10.1977


 English version:
Mathematics of the USSR-Izvestiya, 1980, 14:1, 79–101

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024