RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 2, Pages 243–266 (Mi im1681)

This article is cited in 25 papers

On the dimension of the group of automorphisms of an analytic hypersurface

V. K. Beloshapka


Abstract: Let $M$ be a nondegenerate real analytic hypersurface in $\mathbf C^2$, let $\xi\in M$, and let $G_\xi$ consist of the automorphisms of $M$ fixing the point $\xi$. Then, as follows from a theorem of Moser, the real dimension of $G_\xi$ does not exceed 5. Here it is shown that 1) dimensions 2, 3, and 4 cannot be realized, but for 0, 1, and 5 examples are given; 2) if the point $\xi$ is not umbilical, then $G_\xi$ consists of not more than two mappings.
Bibliography: 4 titles.

UDC: 517.5

MSC: 32C05, 53A55

Received: 20.11.1978


 English version:
Mathematics of the USSR-Izvestiya, 1980, 14:2, 223–245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024