RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1978 Volume 42, Issue 1, Pages 185–199 (Mi im1695)

This article is cited in 37 papers

On the determination of the Sturm–Liouville operator from one and two spectra

B. M. Levitan


Abstract: Let the sequences $\{\lambda_n\}_0^\infty$ and $\{\mu_n\}_0^\infty$ define the Sturm–Liouville problem
\begin{equation} \tag{I} \left.\begin{gathered} -y''+\{\lambda-q(x)\}y=0\quad(0\leqslant x\leqslant\pi),\\ y'(0)-hy(0)=0,\quad y'(\pi)+Hy(\pi)=0, \end{gathered}\right\} \end{equation}
and, in addition, let the sequences $\{\widetilde\lambda_n\}_0^\infty=\{\lambda_n\}_0^\infty$ and $\{\widetilde\mu_n\}_0^\infty$, where $\widetilde\mu_n=\mu_n$ for $n>N\geqslant0$, define a second Sturm–Liouville problem
\begin{equation} \tag{II} \left.\begin{gathered} -y''+\{\lambda-\widetilde q(x)\}y=0,\\ y'(0)-\widetilde hy(0)=0,\quad y'(\pi)+\widetilde Hy(\pi)=0. \end{gathered}\right\} \end{equation}

In this paper we show that the kernel $F(x,s)$ of the integral equation for the inverse problem, in which problem (II) is regarded as a perturbation of problem (I), has the form
$$ F(x,s)=\sum_{n=0}^N\psi(x,\widetilde\mu_n)\varphi(s,\widetilde\mu_n), $$
in the triangle $0\leqslant s\leqslant x\leqslant\pi$, wherein $\psi(x,\lambda)$ and $\varphi(s,\lambda)$ are solutions of (I). In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\widetilde q(x)-q(x)$.
Bibliography: 5 titles.

UDC: 517.9

MSC: Primary 34B25; Secondary 45A05

Received: 13.09.1976


 English version:
Mathematics of the USSR-Izvestiya, 1978, 12:1, 179–193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024