RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 5, Pages 1124–1133 (Mi im1698)

This article is cited in 1 paper

The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point

S. A. Lomov, A. S. Yudina


Abstract: The method of regularization is applied to obtain a fundamental system of solutions of a singularly perturbed equation with a regular singular point
$$ \varepsilon^2z^2w''+\varepsilon zp(z)w'+g(z)w =0. $$
The solutions are of the form
$$ w_k(z,\varepsilon)=z^{r_k(\varepsilon)/\varepsilon} \exp\biggl\{\frac1{\varepsilon}\int_0^z\lambda_k(\tau)\,d\tau\biggr\} \sum_{i=0}^\infty\varepsilon^iw^k_i(z),\quad k=1,2. $$
The series are asymptotically convergent as $\varepsilon\to0$ uniformly in $z$ in some bounded domain. Here the $r_k(\varepsilon)$ are the roots of the indicial equations, the $\lambda_k(z)$ are the roots of the characteristic equation and the functions $w_i^k(z)$ are the solutions of certain recurrent linear differential equations of the first order. The results are applied to an asymptotic expansion of Bessel functions $I_\nu(\nu z)$ as $\nu\to\infty$.
Bibliography: 5 titles.

UDC: 517.9

MSC: Primary 34A20, 34B30, 34E15; Secondary 33A40, 34D15

Received: 01.07.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 21:2, 415–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024