RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1982 Volume 46, Issue 6, Pages 1316–1332 (Mi im1705)

This article is cited in 1 paper

Closed ideals of algebras of type $B_{p,q}^\alpha$

N. A. Shirokov


Abstract: Let $B_{p,q}^\alpha$ be the space of functions analytic in the unit disk, with the norm
$$ |f(0)|+\sup_{0<r<1}\Biggl[\int_0^\pi\frac{dh}{h^{1+\alpha q}} \biggl(\int_0^{2\pi}|f(re^{i(\theta+h)})-f(re^{i\theta})|^p\,d\theta\biggr)^{q/p}\Biggr]^{1/q}, $$
where $0<\alpha<1$, $p>1/\alpha$ and $1\leqslant q\leqslant\infty$, and let $C_A$ be the space of functions analytic in the unit disk and continuous in its closure. All closed ideal are described for spaces more general than $B_{p,q}^\alpha$; it is shown that for every closed ideal $I\subset B_{p,q}^\alpha$ there is a closed ideal $I_0\subset C_A$ such that $I=I_0\cap B_{p,q}^\alpha$, and conversely.
Bibliography: 13 titles.

UDC: 519.4

MSC: Primary 46J15, 46J20; Secondary 30D55

Received: 10.12.1981


 English version:
Mathematics of the USSR-Izvestiya, 1983, 21:3, 585–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025