RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1981 Volume 45, Issue 6, Pages 1258–1287 (Mi im1714)

This article is cited in 6 papers

On residues in algebraic geometry

V. G. Lomadze


Abstract: Let $f\colon X\to S$ be a dominant morphism of algebraic schemes, with $S$ integral. Let $n$ be the relative dimension of $f$ and let $x=(x_0,x_1,\dots,x_n)$ be a sequence of points of $X$ such that, for all $0\leqslant i\leqslant n$, $x_i$ is a specialization of $x_{i-1}$, has codimension $i$ and is mapped into the generic point of $S$. Under these conditions a residue mapping (of $f$ into the “chain” $x$)
$$ \operatorname{Res}_x^f\colon\Omega^*(X)\to\Omega^*(S) $$
is defined and its main properties, in particular the “residue formula”, are proved.
Bibliography: 14 titles.

UDC: 513.6

MSC: Primary 14A15; Secondary 13J10, 13H99, 14B05

Received: 04.12.1980


 English version:
Mathematics of the USSR-Izvestiya, 1982, 19:3, 495–520

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024