RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1979 Volume 43, Issue 3, Pages 483–546 (Mi im1722)

This article is cited in 8 papers

Some duality theorems for cyclotomic $\Gamma$-extensions of algebraic number fields of $CM$ type

L. V. Kuz'min


Abstract: For an odd prime $l$ and a cyclotomic $\Gamma$ – $l$-extension $k_\infty/k$ of a field $k$ of $CM$ type, a compact periodic $\Gamma$-module $A_l(k)$, analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module $A_l(k)$. The properties of this scalar product are examined, and certain other duality relations are determined on $A_l(k)$. It is proved that, in a finite $l$-extension $k'/k$ of $CM$ type, the $\mathbf Z_l$-ranks of $A_l(k)$ and $A_l(k')$ are connected by a relation similar to the Hurwitz formula for the genus of a curve.
Bibliography: 7 titles.

UDC: 519.4

MSC: Primary 12A40; Secondary 12A35, 12A60

Received: 22.06.1978


 English version:
Mathematics of the USSR-Izvestiya, 1980, 14:3, 441–498

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024